

100-DAY WHEAT?

A SHORT-SEASON, EARLY-VIGOROUS WHEAT IDEOTYPE FOR ADAPTATION TO A CHANGING GLOBAL CLIMATE

Timothy Green^a, Dr Sergio Moroni^a, Dr Felicity Harris^a, Prof. Jim Pratley^a, Dr Daniel Mullan^b, and Dr Greg Rebetzke^c ^aCharles Sturt University, Wagga Wagga. ^bInterGrain, Bibra Lake, WA. ^cCSIRO Agriculture and Food, Canberra, ACT

INTRODUCTION

- Australian autumns are becoming drier; where main season wheat is sown. This is encouraging growers to sow dry, risking poor germination and emergence
- Current varieties cannot be sown outside their optimum time due to frost and heat risk at anthesis¹
- A commercial variety needs to be bred that can be sown later (i.e. mid-winter) to opportunistically capture delayed rainfall

What are the **developmental** and **physiological** drivers that will enable this?

Drone photograph of 2021 trial at Wagga Wagga

Two wheat genotypes presenting vastly different physiology with late sowing in the field at Wagga Wagga 2021

Experimental wheat genotypes bred for early vigour have the potential to **outyield** commercial varieties despite the significant **yield reduction** associated with later sowing

RESULTS

Combinations of **rapid development** and **high early vigour** were observed in experimental wheat genotypes, ideal candidates for future breeding selection

In 2021, in both the June and July sowing, grain yield was positively correlated with greater **spike number** per m^2

Spike number (per m²) at harvest and grain yield for all genotypes across both times of sowing at Wagga Wagga in 2021. The line represents a simple linear regression between the variables.

ACKNOWLEDGMENTS

all genotypes across the times of sowing, TOS1 June 7 2021, TOS2 July 12 2021, TOS3 June 28 2022. Red circles highlight ideal combinations of high early vigour and rapid development at each TOS.

DISCUSSION

commercial wheat genotypes in a field experiment in Wagga Wagga

Predicted grain yield from a selection of experimental and

2021, LSDs 2021 TOS1: 1.29t/ha, TOS2: 0.83t/ha

REFERENCES

The well documented yield reduction associated with delayed sowing was observed in 2021²

- Selection for fast flowering, high early vigour, and many productive tillers will overcome this yield drop
- Large genetic diversity exists to aid these selections³
- More experiments are needed in less favourable years to optimise trait selection

 Flohr BM, Hunt JR, Kirkegaard JA, Evans JR, Trevaskis B, Zwart A, Swan A, Fletcher AL, Rheinheimer B (2018). Field Crops Research 223, 12-25.

2. Hunt J, Fettell N, Midwood J, Breust P, Peries R, Gill J, Paridaen A (2012). Proceedings of the 16th Australian Society of Agronomy Conference: Capturing Opportunities and Overcoming Obstacles in Australian Agronomy.' (Australian Society of Agronomy Armidale)

3. Rebetzke GJ, Richards RA (1999). Australian Journal of Agricultural Research 50, 291-302.

Funded by:

- GRDC GRS UC2105-002RSX
- CSU AGRTP
- Farrer Memorial Trust

Timothy Green

tigreen@csu.edu.au

Gulbali Institute Agriculture Water Environment

AN: 118