Syppre, a unique experimental network to meet the sustainability objectives of agricultural systems

ESTIENNE MARIE¹, VIGUIER LOÏC¹, JAMET DOMITILLE², TAUVEL PAUL³

¹Arvalis, ²Terres Inovia, ³ITB.

18th Congress of the European Society for Agronomy in Rennes, France

Syppre, an unique research & development methodology

Synergy between the 3 technical institutes on arables crops in France

An original methodology based on

- An **observatory** of algricultural practices
- 5 experimental **platform**
- Farmers **network**

Syppre, an original experimental network

- 5 sites representative of major arable farming areas in France;
- On each site:
 - Experimentations starts in 2016, data acquisition from 2017 to 2023;
 - An experimental platform from 3 to 10 ha;
 - Locally adapted innovative and reference systems;
 - Reference system representative of main local farming practices (crops and crop management).
 - Innovative system co-built with local farming partners and farmers.
 - All crops present every year;
 - 2 to 3 spatial repetitions.

Which levers in the innovative systems ?

Main levers :

- Increased cultivated biodiversity:
 - More crops (major and minor), including legumes;
 - Multiple cropping, mostly through relay-cropping;
 - Multi-Services Cover Crops (MSCC), including legumes.
- Reduction of inversion and deep tillage;
- Use of decision tools and technical institute recommendations for crop management;
- Use of cultivar diversification.

Building tomorrow's cropping systems together

Example from the Lauragais site :

What objectives and criteria to assess the systems?

Dimension	Criteria	Objective innovative vs. reference		
	TFI	-50%		
Technical	Mineral nitrogen application (kg ha ⁻¹)	-20%		
	Primary energy consumption (MJ ha ⁻¹)	-20%		
Environment	Greenhouse Gases emissions (t eq.CO ₂ ha ⁻¹)	-20%		
Productivity	Gross energy production (MJ ha ⁻¹)	ž		
Profitability	Direct margins with aids (€ ha ⁻¹)	2		

SYSTERRE

Research questions:

- Do innovative systems achieve their objectives (system effect)?
- What is the impact of annual variations (year effect)?
- Do innovative systems improve over time (system:year)?

Do our innovative systems achieve multi-performance?

*Average of the 5 sites over 7 years

6

Dimension	Criteria	Objective (Innovative vs. Reference)	Results* (Innovative vs. Reference)	System effect (p-value)	Year effect (p-value)	System:year effect (p-value)	SYSTERRE
Technical	TFI	-20 %	-10 ± 25 %	0.14	0.00	0.98	
	Mineral nitrogen application (kg ha ⁻¹)	-20 %	-24 ± 15 %	0.01	0.06	0.85	
Environment .	Primary energy consumption (MJ ha ⁻¹)	-20 %	-15 ± 10 %	0.03	0.00	0.91	
	Greenhouse Gases emissions (t eq.CO ₂ ha ⁻¹)	-20 %	-22 ± 10 %	0.00	0.02	0.78	
Productivity	Gross energy production (MJ ha ⁻¹)	2	-11 ± 13 %	0.03	0.00	0.97	
Profitability	Direct margins with aids (€ ha ⁻¹)	2	-20 ± 33 %	0.01	0.00	0.94	

Main results:

ore

FARVALIS

- Technical and environmental performances → innovative > reference ; ¬
- Productivity and profitability performances \rightarrow innovative < reference; $\int \phi$ Multiperformance \rightarrow unsatisfactory
 - Strong variations of performances according to the year (*significant year effect*);
 - No suggestions for relative improvement of innovative systems over time (*nonsignificant system:year interaction*).

Stastistics \rightarrow Mixed-effects model with « site » as a random effect – Longis et al. 2024

Are there any differences in trends between sites ?

Results* Objective (Innovative vs. Reference) Criteria Dimension (Innovative vs. Reference) Béarn Berry Champagne Lauragais Picardie TEL -20 % -26 + 29 % -21 ± 20 % -6 ± 13 % 22 ± 14 % -21 + 9 % Mineral nitrogen Technical -20 % -34 ± 6 % -30 ± 15 % -25 ± 12 % -25 ± 15 % -9 ± 11 % application (kg ha⁻¹) **Primary energy** consumption -20 % -23 ± 6 % -19 ± 11 % -11 ± 6 % -1±6% -20 ± 4 % (MJ ha⁻¹) **Environmental** Greenhouse Gases emissions -20 % -28 ± 5 % -25 ± 12 % -19 ± 9 % -19 ± 10 % -18 ± 8 % $(t eq.CO_2 ha^{-1})$ Gross energy Productivity production 1 ± 14 % -20 ± 7 % -7±4% -8 ± 10 % -23 ± 7 % ≥ (MJ ha⁻¹) Direct margins with aids 23 ± 33 % -40 ± 21 % Profitability -11 ± 27 % -32 ± 25 % -38 ± 12 % ≥ (€ ha⁻¹)

*Average per site over 7 years SYSTERRE

- TFI : most systems reach the objective ;
 - Increased in Lauragais → addition of relatively high TFI crops (e.g., rapeseed) and MSCC chemical destruction in relation to reduced tillage strategy.
- Other technical and environmental dimensions results are detailed in *Marie Estienne's presentation Syppre: innovative systems to meet the challenges of improving agriculture's carbon footprint.*
- Productivity and profitability: only Béarn stands out (extensive use of multiple cropping, relatively low addition of minor crops).
 - Why do our innovative systems tend to be less productive ?

Building tomorrow's cropping systems together

Terres loovio

FARVALIS OITB

Why do our innovative systems tend to be less productive ?

	Gron	Yield (t . ha ⁻¹)		n value	Energy content	Crop area at farm level (ha)			Innovative system		Reference system	
_	Сюр	Innovative	vative Reference	p-value	(kcal.kg⁻¹)	Innovative	Reference	Site	Crop failure Crop partial failure Crop failure Crop partial failure			
Major crops (site)	Maize + oat as energy crop (Béarn)	10.9 ± 2.4 + 7.2 ± 1.9	11.9 ± 2	0.1095	4450	31.5	63	Béarn	0	3	0	0
	Soft wheat (Berry)	6.6 ± 1	6.9 ± 1	0.441	4350	34	50	Berry	1	0	0	1
	Beetroot (Champagne)	79 ± 26.2	84.9 ± 24.1	0.944	3870	36	36	Champagne	5	3	0	0
	Durum wheat (Lauragais)	6.2 ± 1.5	6.6 ± 1.5	0.221	4420	43	85	Lauragais	3	9	0	0
	Beetroot (Picardie)	80.1 ± 17.4	94.3 ± 13.9	0.00642	3870	18	27	Picardie	2	2	1	0
								Total	11	17	1	1
Exemple of added minor crops in Berry	Millet	3.4 ± 0.8	/		4610							
	Lentil	1.8 ± 0.9	/		4410							

• Major crop yields:

- No statistical difference between systems at each site (except beetroot in Picardie);
- Nevertheless, on trend, industrial crops such as beet and potatoes tend to have lower yields in innovative systems since they are more sensitive to changes in crop management.
- We can also note yield differences between same crops at a different place in the rotation wich benefit or not from the previous crop effect

• Minor crop yields:

- Tend to have low yields and contribute to more failure and partial failures;
 - Learnings, fewer plant improvements, less phytosanitary options, less adapted farm equipment, predation problem (birds).
- No compensation through higher energy content of crops (gross energy production).

Why do our innovative systems tend to be less profitable?

- Gross product of innovative systems are lower:
 - Dilution of profitable major crops in farm utilized area, low minor crop yields and unprofitable prices for minor crops.
- Innovative and reference systems costs are similar:
 - Innovative systems tend to have lower fertilizers and similar pesticides costs;
 - Innovative systems tend to have higher mechanization (weeding) and seed (MSCC) costs.
 - Direct aids including eco-schemes from the 2023-2027 CAP are not enough to reverse economic trends.

٠

Main conclusions

- Diversification is a way to improve environmental performances of agricultural systems.
 - Antagonisms may occur depending on the starting point (e.g. TFI in Lauragais site).
- The economic performance of more diversified systems is often not achieved:
 - Need to increase agronomic knowledge to improve yields of minor crop and reduce failures and adapt crops to experimental constraints like bird predation;
 - Need synchronized contribution of other actors of agri-food system (genetic, value-chain, consumers) to collectively improve the agronomic and economic performances;
 - Need for greater financial support from the CAP for agricultural systems with fewer negative externalities for the environment.
- Adaptation of crops and crop management to local environmental and economical contexts is decisive to achieve multiperformance.
- Syppre is a unique network of collaboration between French technical institutes and generates many technical learnings (see \rightarrow syppre.fr)

Thank you for you attention

Contact: <u>m.estienne@arvalis.fr</u>

