Modelling fungal diseases in intercrops

Author(s) [<u>A. Deheinzelin;</u> M. Launay; T. Vidal; M-O. Bancal, P. Lecharpentier]

INRAE

18th Congress of the European Society for Agronomy in Rennes, France

Modelling framework

Global Inputs

Plant parameters

General parameters

Local Inputs

Initialisation

Weather

Crop management

Soil characteristics

Main characteristics

- > Crop model STICS
- Generic (external parameter files)
- Recalibrated on intercrops (Vezy et al., 2023)
- Microclimate calculations
- Agronomic specifications (fertiliser, sowing, tillage, etc)

Modelling framework

Global Inputs

Main characteristics

- > Crop model STICS
- Generic (external parameter files)
- Recalibrated on intercrops (Vezy et al., 2023)
- Microclimate calculations
- Agronomic specifications (fertiliser, sowing, tillage, etc)

Modelling framework

Global Inputs

Main characteristics

- > Crop model STICS
- Generic (external parameter files)
- Recalibrated on intercrops (Vezy et al., 2023)
- Microclimate calculations
- Agronomic specifications (fertiliser, sowing, tillage, etc)

Fungal disease model MILA

calibrated for a variety of polycyclic airborne fungal diseases
(Caubel et al., 2012 and 2017) on single cropping systems

Method – Model behaviour analysis

Adapt MILA-STICS to intercrops

2 - ERIN

Dilution effect – Wheat single crop

- > Key findings
- No effect of row spacing on ERIN, expected with Beer-Lambert

- - \geq **Key findings**
 - No effect of row spacing on ERIN, expected with Beer--Lambert
 - Notable effect of the solutions on LAI _

- Key findings
- No effect of row spacing on ERIN, expected with Beer-Lambert
- Notable effect of the solutions on LAI due to delay in the start of spore interception via the row spacing

- > Key findings
- No effect of row spacing on ERIN, expected with Beer-Lambert
- Notable effect of the solutions on LAI due to delay in the start of spore interception via the row spacing
- Agronomic levers to reduce diseases levels: density and/or row spacing

sowing density

- > Key findings
- No notable difference between the 2 formalisms

sowing density

- > Key findings
- No notable difference between the 2 formalisms
- Abscence of a peak with RADI

Intercepted spores (cumulated)

- Key findings
- No notable difference between the 2 formalisms
- Abscence of a peak with RADI
- A little more intercepted spores with ERIN but no significant impact on LAI

Wheat plant density

Wheat plant density

Putting it all together

➤Key findings

- Cumulated spores: for dilution ERIN more like a middle RADI

25 %

33 %

50 %

66 %

+

15

25

30

35

Putting it all together

≻Key findings

- Cumulated spores: for dilution ERIN more like a middle RADI
- Increasing row spacing reduces spores, even more at high densities

Comprehensive framework

- Test hypotheses on disease dynamics
- Optimise spatial temporal arrangement

Comprehensive framework

- Test hypotheses on disease dynamics
- Optimise spatial temporal arrangement

RADI better?

- Canopy and field geometry
- More sensitive to agronomic levers

Comprehensive framework

- Test hypotheses on disease dynamics
- Optimise spatial temporal arrangement

RADI better?

- Canopy and field geometry
- More sensitive to agronomic levers

Perspectives

Comprehensive framework

- Test hypotheses on disease dynamics
- Optimise spatial temporal arrangement

RADI better?

- Canopy and field geometry
- More sensitive to agronomic levers

Perspectives

Extending behaviour analysis

More outputs (feedback loop, interaction with other disease processes)

Comprehensive framework

- Test hypotheses on disease dynamics
- Optimise spatial temporal arrangement

RADI better?

- Canopy and field geometry
- More sensitive to agronomic levers

Perspectives

Extending behaviour analysis

More outputs (feedback loop, interaction with other disease processes)

Other parameters and their interactions (sowing date for example)

Comprehensive framework

- Test hypotheses on disease dynamics
- Optimise spatial temporal arrangement

RADI better?

- Canopy and field geometry
- More sensitive to agronomic levers

Perspectives

Extending behaviour analysis

Comprehensive framework

- Test hypotheses on disease dynamics
- Optimise spatial temporal arrangement

RADI better?

- Canopy and field geometry
- More sensitive to agronomic levers

Perspectives

Comprehensive framework

- Test hypotheses on disease dynamics
- Optimise spatial temporal arrangement

RADI better?

- Canopy and field geometry
- More sensitive to agronomic levers

Perspectives

