Farm resilience in Mediterranean agricultural territories: a multi-scale and multi-risk approach in France and Tunisia

Audrey Naulleau, Nina Graveline, Mehdi Ben Mimoun, Wafa Koussani, Guillaume Lestrelin, Agnès Colbe, Capucine Levas, Amel Tabka, Tamara Ben Ari, Laure Hossard

<u>Audrey.naulleau@cirad.fr</u>

18th Congress of the European Society for Agronomy in Rennes, France

INRA

A Mediterranean basin exposed to multiple risks

- Stresses AND shocks
 - Climatic \geq

- Severe drought
- Economic
- Heat waves

- Sanitary \geq
- ➤ Etc.

- Ukraine war : cereals and fertilizers prices
- Importance of farm resilience (Meuwissen et al., 2019)
 - Several frameworks
- Adaptation depending on different scales, in particular the territory
 - Natural resources management (individual, collective)
 - Inputs availability (seeds, equipment ...)
 - Knowledge circulation and extension services

Objective : Develop an operational framework to assess the resilience of farming systems by hybridizing existing frameworks

Risks X Resources X Stakeholders

- <u>Risks</u>: farmer's adaptation strategies in response to both perceived short- and long-term risks.
- <u>Stakeholders</u>: Farmers' practices AND capacities (van der Lee et al., 2022) AND social & physical Relations (Darnhofer et al., 2016)
- <u>Ressources</u>: all the ressources and their accessibility including social and cognitive ressources

=> territorial perspective

Two contrasted case studies

- Aude valley (South of France)
 - Mediterrean climate (450-650 mm)
 - 89,000 ha of cropland including 21% irrigated
 - Specialized systems (grapevine, cereals, grassland, vegetable and fruits)
 - Mean farm size of 35 ha

- Siliana (North Tunisia)
 - Semi arid climate (300-500 mm annual)
 - 8,500 ha of cropland including 15% irrigated
 - Diversified systems (cereals, olive tree, breeding, vegetable)
 - Mean farm size of 10 ha

Method in each site:

± 30 semi-directive interviews with farmers

- Gather perceived risks
- Document adaptation strategies
- Identify what and how resources are mobilized or not

± 6 semi-directive interviews with others stakeholders

Identify their facilitating or hindering role

<u>Analyses:</u> co-citation of risks, adaptations' strategies & use of resources, focus on the social resources

Adaptation strategies in Aude valley to main risks

Main risks: Drought x Wine crisis

	CLASS OF RESSOURCES	PHYSICAL	FINANCIAL	NATURAL	HUMAN	SOCIAL	COGNITIVE	
Robustness strategies	Anticipating and avoiding the impact of risk (n=4/20) <i>E.g. Take a climatic insurance</i>	0	0.8	0	0	0	0,3	N = 10
	Maintaining an already adapted system (n=6/7) <i>E.g. Maintain polyculture</i>	0	0	0	1	0,3	0.7	
Adaptive strategies	Improving production process (n=40/62) E.g Mechanize a production step	0.5	0,4	0,4	0.5	0,1	0,4	N = 53
	Improving access to resources (n=13/26) <i>E.g. Get involved in agricultural networks</i>	0,3	0,2	0,2	0.8	0,4	0,2	
Transformative strategies	Stop an activity (n=2/3) <i>E.g. Stop a crop</i>	0	0	0	0	1	0	N - 6
	Diversify the system (n=4/6) E.g. Diversify with perennial crops	1	1	1	1	0	0	N – 0

Adaptation strategies in Siliana to main risks

Main risks: Drought x Fodder crisis (price and shortage)

	CLASS OF RESSOURCES TYPE OF STRATEGIES (risks-specific/total)	PHYSICAL	FINANCIAL	NATURAL	HUMAN	SOCIAL	COGNITIVE	
Robustness strategies	Substitution of ressources (n=40/71) <i>E.g. Turn to external sources for fodder</i>	0,9	0,3	0,2	0,1	0,4	0	
	Redundancy (n=3/4) E.g. Store fodder in anticipation of a bad year	1	1	0	0	0	0	N = 43
	Modification of production's function (n=0/11)	/	/	/	/	/	/	
Adaptive strategies	Improving production process (n=1/37)	0	0	1	0	1	0	N – 7
	Tightening system (n=6/14) E.g. Decrease herd size, Reduce family expenses	0	0	0	0	0	0	N – 7
Transformative strategies	Introduction of an activity (n=8/12) <i>E.g. Convert from dairy to beef production</i>	1	0,5		0,1	0,3	0,3	N = 14
	Stop an activity (n=6/12) E.g. Abandon livestock farming	0	0	0	0	0	0	7

Total Social resources and their role in strategies in face of combined main risks

R: robustness, A: adaptation, T: transformation

Perspectives

• Assessment of the resilience outcomes

 Formalization of different networks configurations between actors, resources and institutions => more transformative strategies linked to more complex networks?

Barnes et al., 2017 Labeyrie et al., 2024

• From local case studies to Mediterranean basin resilience study ?