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Introduction



Agriculture covers about 40% of the Earth’s terrestrial area

‘ Agriculture %

. 100

Fritz et al. 2015
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to promote multifunctional agriculture?

HEDGEROW FUNCTIONING

1. Habitat provision
-> survival/growth (stamps & Linit 1998)

2. Habitat connectivity
- dispersal (litzer et al. 2012)

3. Environmental heterogeneity
- coexistence (Stein et al. 2014)
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Combining organic farming and hedgerow preservation
to promote multifunctional agriculture?

HEDGEROW FUNCTIONING

agrochemical
disturbances (conventional farming)
% undermine the beneficial effects of
=% hedgerows (madin & Nelson 2023)

1. Habitat provision
-> survival/growth (stamps & Linit 1998)

2. Habitat connectivity
- dispersal (litzer et al. 2012)

3. Environmental heterogeneity
- coexistence (Stein et al. 2014)
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Indicators Agroecosystem goods

Estimating multifunctionality

Indicators Agroecosystem goods

Soil enzyme activities

% symbio- and saprotrophic fungi

2. Nutrient cycling and soil
structure

Earthworm abundance

SOC:clay ratio

C:N ratio

Byrnes et al. 2023 15
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Results and discussion



Major positive influence of organic farming on many indicators

Organic farming x
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Major positive influence of organic farming on many indicators
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Major positive influence of organic farming on many indicators

Multifunctionality (AES goods)
Multifunctionality (indicators)
Biodiversity conservation 1
Bacterial diversity 1
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m diversity 1
jersity 1

Carabid diversity 1

Pest and disease regulation 1
Granivorous carabid abundance 1
Carnivorous carabid abundance

Staphylinid abundance 1

Spider abundance A

Aphid parasitism rate 4

Weed abundance* 1

Aphid abundance* 4

Septoria tritici abundance™
Food production 1
Socio-economic performance 1
Duration of interventions™ 4
Semi-net margin 1

Organic farming

RESULTS INTERPRETATIONS

—8—
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—e—
= 7 pest and disease regulation  Increased resources promote the growth of (generalist)
o +26 carnivorous carabid and natural enemy populations, and absence of synthetic
- +42 spider individuals / pair of  fertilizers reduces plant diseases (Précigout et al. 2017)
T pitfall traps
=S
8
—8—
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Major positive influence of organic farming on many indicators

Organic farming

Multifunctionality (AES goods) ] RESULTS INTERPRETATIONS

Multifunctionality (indicators)
Biodiversity conservation 1 ——
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e :;1;»f;';/§3131'2i312Jjj' o 7 semi-net margin (+248€/ha)  Lower costs and higher selling prices increase profitability
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Arable weeds: a central role in agroecosystem multifunctionality
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Combining organic farming and hedgerows Is possible/preferable

A) Graniv. carabid abundance B) Semi-net margin (€.ha™")
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06 @ tfem ceecce = , , , , * Increase in yields and semi-net margin owing to ecological
6 ? 12 1 6 ¢ 12 0 intensification ? (farming practices were constant along the
C) Grain yield (q.ha ") D) Multifunctionality (indicators) hedgerow gradient) (Abson et al. 2013; Dainese et al. 2019)
104
90{e ‘e . CE - Hedgerows are not sources of weeds and do not decrease
r [ Bhd * 8 .
s e, ¢ . yields (Boinot et al. 2019; Boinot et al. 2022)
60 4
6- - - - -
- Evidence of antagonistic effects: landscape studies should go
. ) beyond the context of conventional farming, which is not
: : o : : o conducive to ecological intensification

Total hedgerow length (km)
within a 1 km radius of crop fields

31
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Conclusion and future research

* Reducing agrochemical input in crop fields is necessary to promote agroecosystem
multifunctionality, whereas preserving seminatural habitats alone is probably
insufficient.=> Sustainable Use Regulation

"« Multifunctionality requires more research on agroecological weed management:

How to promote weed evenness/coexistence? Functional differences between
weeds and crops?

* Yields are one aspect of food security = reducing poverty/inequalities, food waste

and-malnutrition, and increasing stability of agricultural production (Holt-Giménez et al.
2012; Benton & Bailey 2019; Pe’er et al.-2023) :

- Hedgerow: landscapes may promote the stability of agroecosystem functioning
(including production) by favouring biodiversity, providing refugia, and buffeting

extreme events, which require longer-term observations (Garibaldi et al. 2011; Abson et al. 2013;
Redhead et al. 2020; Nelson et al. 2022)
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Field data collection

Seil Soil micro-  Earthworms Weeds Crop Aphids and  Carabids,
parameters organisms disease mummies spiders and
and enzyme severity staphylinids
activities
Sampling date April-May  May April Jmme-Tuly  March-May May—une May
(2019)
Number of 1 1 1 1 2 2 1
sessions
Sample type Soil anger Bulk soil Quadrat Quadrat Plant leaf Plant Pitfall trap
sample individual (four days)
Dimension of Scm@ 5% 10ecm 40 = 40 cm 1x1m _ _ 95cm@
samples
Sampling effort 3 ] 3 10 12-20 plant 25 2
per field and per mdrvidual
sessions and 3 leaves
{ individual
Sampling design Four comers Distance Distance Dnstance Distance Random Center
+ center gradient gradient gradient +  gradient
center
Distance from 5 (min) 10-20-30 15-30-45 10-20-30-  5-15-25-35  10-30 50
nearest field 50
margin (m)
Minimal distance =30 10 20 10 10 5 20
between samples
(m)

Soil depth (cm) 0220 0-10
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Understandable multifunctionality measures using Hill numbers

Jarrett E. K. Byrnes®©=', Fabian Roger®* and Robert Bagchi®*

entropies and species richness (Jost 2006) and more. All can
be expressed as generalized entropies that can be converted to
an effective number of species of ‘order’ ¢ which specifies the
weighting of proportional abundances. The general formula
for the diversity of order g for § species is the following:

R 1/(1-4)
D= T 1
Z ¢'=1Pf ( )

Here, p, is the relative abundance of the ith species and g is
the weight given to the species’ relative abundances. Species
richness, the effective number of species based on Shannon
entropy, the effective number of species based on the Simpson
index, and the Berger—Parker dominance index are all effec-
tive numbers of species of order =0, 1, 2 and oo, respec-
tively. (Note that the formula is undefined for g=1, but its

To define the effective number of functions, we begin with a
set of measurements on £ functions (Table 1) that have been
standardized to a common scale (i.e. between 0 and 1 where 0
means no function and 1 means maximum level of funcrion).
Let F, i € 1, 2, ...K show the level of function for function
i (Table 1). The relative proportion a function contributes to
the whole is defined as

F
b =a @)
T Z F:
We can now substitute the relative proportion into the for-
mula for the effective number of types given in Eq. 1

I ]J'f{]_‘fJ
TN = 4
[Z a'=lPr ] (3}

where 77V is the effective number of functions for some order
g (Table 1). The effective number of functions here translates
to the equivalent number of functions were all functions pro-
vided at the same level. Effective number of funcrions tells
us nothing about total level of functioning. Average function
can be low or high (see below and Fig. 1). Rather, 7V tells us
how many functions we would see in an equivalent system
where all functions were performing at the same level. This

effective number of functions can actually drop. To achieve the
translation to a metric of multifunctionality, we need to take
into account the level at which the functions are performed:
the arithmetic mean of the function values standardized to a
common scale, which we define as A (Table 1). As we are using
standardized values as before, A will range from 0 to 1.

We can then calculate effective multifunctionality of arder
¢ (Table 1) as the product of both terms. We remind readers
that A is an expected value - it provides information on the
expected level of one function sampled at random from the
cluster of functions. Scaling A by *N gives a metric of multi-
function summed across the suite of functions — the cumula-
tive performance of the system were it composed of functions
all performing at equal levels

"M = "NA (4)

This metric, where 7M , is effective multifunctionality for
order ¢, will have a maximum value of K the total number
of functions measured in the system, as maximum perfor—
mance is all functions performing at a standardized level of
1. Alternatively, we can standardize by the total number of



Buffer radius = 250 m

Multifunctionality (AES goods)
Multifunctionality (indicators) 4
Biodiversity conservation -
Bacterial diversity A

Fungal diversity 1

Earthworm diversity 4

Weed diversity 1

Carabid diversity -

Nutrient cycling and soil structure -
Soil enzyme activities 1

% symbio- and saprotrophic fungi 4
Earthworm abundance A
SOC:clay ratio 4

C:N ratio 1

Pest and disease regulation 4
Granivorous carabid abundance 4
Carnivorous carabid abundance -
Staphylinid abundance 1

Spider abundance 1

Aphid parasitism rate 1

Weed abundance* 4

Aphid abundance* 1

Septoria tritici abundance™ 4

Food production 1
Socio-economic performance 4
Duration of interventions™ 4

Semi-net margin o

Organic farming x
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Buffer radius =500 m

Organic farming x

Organic farming Total hedgerow length Total hedgerow length

Multifunctionality (AES goods)
Multifunctionality (indicators) 4 ——
Biodiversity conservation - ——
Bacterial diversity A
Fungal diversity 1
Earthworm diversity 4
Weed diversity 1 - @ —o—
Carabid diversity - ——
Nutrient cycling and soil structure -
Soil enzyme activities 1 ——
% symbio- and saprotrophic fungi 4
Earthworm abundance A
SOC:clay ratio 4
C:N ratio 1
Pest and disease regulation 4 ——
Granivorous carabid abundance 4 —-—
Carnivorous carabid abundance - -—
Staphylinid abundance 1
Spider abundance 1 ——
Aphid parasitism rate 1 ——
Weed abundance*{ —@~
Aphid abundance* 1
Septoria tritici abundance* 4 ——
Food production { -&
Socio-economic performance 4
Duration of interventions™ 4 —o—
Semi-net margin o ——

2 4101 2 3 2401 2 3 210 1 2 3
Standardized estimates



Buffer radius = 750 m

Organic farming x

Organic farming Total hedgerow length Total hedgerow length

Multifunctionality (AES goods)
Multifunctionality (indicators) 4 ——
Biodiversity conservation - ——
Bacterial diversity A
Fungal diversity 1
Earthworm diversity 4
Weed diversity 1 -
Carabid diversity - —e— —e—
Nutrient cycling and soil structure -
Soil enzyme activities 1 ——
% symbio- and saprotrophic fungi 4
Earthworm abundance A
SOC:clay ratio 4
C:N ratio 1
Pest and disease regulation 4 ——
Granivorous carabid abundance 4 —-—
Carnivorous carabid abundance - -— [
Staphylinid abundance 1
Spider abundance 1 ——
Aphid parasitism rate 1 ——
Weed abundance*{ —@-
Aphid abundance* 1
Septoria tritici abundance* 4 ——
Food production{ -
Socio-economic performance 4
Duration of interventions™ 4 —-—
Semi-net margin o ——

2 40 1 2 3 2401 2 3 240 1 2
Standardized estimates



Indicator values between conventional (CF) and organic (OF) systems
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Tillage in organic farming systems

A

0.8 1

0.7 1

0.6 1
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Fertilization in organic farming systems

A Weed abundance (%/m?) B Grain yield (g/ha) C Semi-net margin (euros/ha)
1.00 4
2500 1
60 1
0.75 1 2000 1
50 1
4 1500 1
0.50 404
‘ 1000 1
0.25 1 30
500 1
0.001, . . . a0 ' _ . ' ' . ,
0 30 60 90 0 30 60 90 0 30 60 90

Fertilization rate (N kg/ha) Fertilization rate (N kg/ha) Fertilization rate (N kg/ha)



Adjacent margin type

 Hedgerow
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High-income English-speaking Northwestern Europe

. tri South Asia Central Africa
Food production and waste, countiies | —
unhealthy diets
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