Performance and stability of wheat variety mixtures: a multivariate analysis

Laura Stefan, Silvan Strebel, Yann Imhoff, Lilia Levy Häner

Agroscope, Switzerland

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Département fédéral de l'économie, de la formation et de la recherche DEFR **Agroscope**

18th Congress of the European Society for Agronomy in Rennes, France

Why use variety mixtures?

• Diversity increases productivity and stability

Why use variety mixtures?

- **STABILITY**: Compensatory mechanisms
- **PRODUCTIVITY:** Resource complementarity & Selection Effect
- PRACTICALITY: Easier than species mixtures, no need to adjust harvesting techniques

Why are variety mixtures NOT used?

 \rightarrow In CH, only 2% of wheat surface is mixtures

 \rightarrow No general rule to know which mixture would work well

Research goals:

→Investigate role of variety mixtures to increase crop productivity, quality, and stability

 \rightarrow Investigate the mechanisms underlying the effects

- 8 Swiss wheat varieties
- 28 2-variety mixtures
- 1 8-variety mixture

- 3 repetitions in 3 places for 3 years (2021, 2022, 2023)
- = 9 environments

Crop response parameters:

- Grain yield (dt/ha)
- Protein content (%)
- Thousand Kernel Weight (g)
- Hectoliter Weight (kg/hl)
- Zeleny sedimentation value (ml)

Crop response parameters:

- Grain yield (dt/ha)
- Protein content (%)
- Thousand Kernel Weight (g)
- Hectoliter Weight (kg/hl)
- Zeleny sedimentation value (ml)

→ Overperformance of these parameters (e.g. overyielding)

- → Stability using WAASB scores (Olivoto et al., 2019)
- → Multitrait Stability Index (MTSI)

Explanatory variables:

- Height at flowering
- Heading day
- Ear density at maturity
- Leaf Area Index

	Changins	Delley	Utzenstorf	2021	2022	2023	Average
Overyield	1.7	-0.9	-0.5	0.59	-0.34	-0.01	0.08
Overprotein	0.023	-0.3	-0.06	-0.17	-0.07	-0.1	-0.11
OverTKW	0.07	0.07	-0.056	-0.29	0.22	0.16	0.029
OverHLW	-0.55	0.016	0.095	0.078	-0.066	-0.44	-0.14
OverZeleny	-0.15	1.5	1.86	0.035	2.18	1.03	1.08
OverLAI	0.3	NA	NA	0.55	0.035	0.14	0.3

 \rightarrow Global benefits for Zeleny in mixtures

Stefan et al., in review, preprint <u>doi.org/10.1101/2024.07.22.604587</u>

28/08/2024

	Changins	Delley	Utzenstorf	2021	2022	2023	Average
Overyield	1.7	-0.9	-0.5	0.59	-0.34	-0.01	0.08
Overprotein	0.023	-0.3	-0.06	-0.17	-0.07	-0.1	-0.11
OverTKW	0.07	0.07	-0.056	-0.29	0.22	0.16	0.029
OverHLW	-0.55	0.016	0.095	0.078	-0.066	-0.44	-0.14
OverZeleny	-0.15	1.5	1.86	0.035	2.18	1.03	1.08
OverLAI	0.3	NA	NA	0.55	0.035	0.14	0.3

→ Global benefits for Zeleny in mixtures
→ Global disadvantage for protein content

Stefan et al., in review, preprint <u>doi.org/10.1101/2024.07.22.604587</u>

	Changins	Delley	Utzenstorf	2021	2022	2023	Average
Overyield	1.7	-0.9	-0.5	0.59	-0.34	-0.01	0.08
Overprotein	0.023	-0.3	-0.06	-0.17	-0.07	-0.1	-0.11
OverTKW	0.07	0.07	-0.056	-0.29	0.22	0.16	0.029
OverHLW	-0.55	0.016	0.095	0.078	-0.066	-0.44	-0.14
OverZeleny	-0.15	1.5	1.86	0.035	2.18	1.03	1.08
OverLAI	0.3	NA	NA	0.55	0.035	0.14	0.3

 \rightarrow Global benefits for Zeleny in mixtures

 \rightarrow Global disadvantage for protein content

 \rightarrow Global increase in LAI in mixtures \rightarrow Better light interception

Stefan et al., in review, preprint <u>doi.org/10.1101/2024.07.22.604587</u>

Which variety traits are good to combine ?

Stefan et al., in review, preprint doi.org/10.1101/2024.07.22.604587

28/08/2024

Laura Stefan

	Overyield	Overprotein	OverTKW	OverHLW	OverZeleny
Awns difference					
Diff in mono yield					
Diff in mono protein		-			
Diff in mono height	-			-	
Diff in mono heading day			-		-
Diff in mono density		+			
Diff in mono LAI early					
Diff in mono LAI late					
OverLAI early					
OverLAI late	+		-		

Advantageous
 variety mixtures
 with components of
 similar plant height
 and phenologies

Stefan et al., in review, preprint <u>doi.org/10.1101/2024.07.22.604587</u>

28/08/2024

	Overyield	Overprotein	OverTKW	OverHLW	OverZeleny
Awns difference					
Diff in mono yield		+			+
Diff in mono protein		-			
Diff in mono height	-			-	
Diff in mono heading day			-		-
Diff in mono density		+			
Diff in mono LAI early					
Diff in mono LAI late					
OverLAI early		+			+
OverLAI late	+		-		

Advantageous
 variety mixtures
 with components of
 similar plant height
 and phenologies but
 different yield
 potentials and ear
 densities

Stefan et al., in review, preprint <u>doi.org/10.1101/2024.07.22.604587</u>

	Overyield	Overprotein	OverTKW	OverHLW	OverZeleny
Awns difference					
Diff in mono yield		+			+
Diff in mono protein		-			
Diff in mono height	-			-	
Diff in mono heading day			-		-
Diff in mono density		+			
Diff in mono LAI early					
Diff in mono LAI late					
OverLAI early		+			+
OverLAI late	+		-		

Advantageous variety mixtures with components of similar plant height and phenologies but different yield potentials and ear densities

→ Importance of light absorption (overLAI) and better ability of mixtures to capture light

ک Agroscop

Stefan et al., in review, preprint <u>doi.org/10.1101/2024.07.22.604587</u>

28/08/2024

Difference in monoculture height (cm)

 \rightarrow Overyielding is higher when mixing varieties with **similar** heights

 \rightarrow Light competition, no need for shorter varieties to compensate by growing more stem at the expense of grains

Fig. 1: Grain overyield (dt/ha) of the mixtures in relationship to the mean difference in height of the corresponding varieties when grown in monocultures (cm), in Changins, Delley, and Utzenstorf. n=754

The lines represent linear regression fittings, with the grey area representing the 0.95 confidence interval. Stars represent significant relationships at p-value < 0.05.

Overyielding is higher when overLAI is higher, i.e. when the mixtures are better at intercepting light than the relative sum of their components

→ But... what is driving this increase in light interception in some mixtures? Plasticity in ear density? Tillering ability?

Fig. 2: Grain overyield (dt/ha) (a) and overZeleny sedimentation value (mL) (b) of the mixtures in relationship to overLAI (Leaf Area Index) in Changins. n=246

The lines represent linear regression fittings, with the grey area representing the 0.95 confidence interval. Stars represent significant relationships at p-value < 0.05.

Stefan et al., in review, preprint doi.org/10.1101/2024.07.22.604587

Results: Mixtures stability

Stability in many parameters higher in mixtures compared to monocultures

- \rightarrow Especially true for TKW and Zeleny
- →Results are valid across different scales (temporal, spatial, global)

Fig. 3: Temporal Stability scores for protein content (a), TKW (b), HLW (c), and Zeleny (d) in response to monoculture vs. mixture, and to site for HLW. n=111

Lower WAASB scores indicate higher stability.

Results: Mixtures stability

→ Stability higher
 when varieties
 have similar
 heights

Fig. 5: Global Stability scores for TKW (a) and HLW (b), as well as Global Multitrait Stability Index (c) of the mixtures in relationship to difference in monoculture height. n=28

Lower WAASB scores indicate higher stability.

The lines represent linear regression fittings, with the grey area representing the 0.95 confidence interval. Stars represent significant relationships at p-value < 0.05.

Stefan et al., in review, preprint doi.org/10.1101/2024.07.22.604587

Results: Global performance & stability

- Global ranking of mixtures and varieties for stability and performance of the 5 response parameters
 → practical recommendations for Swiss
 - farmers

Nonselected
 Selected

Agroscop

Laura Stefan

Conclusions

- **Mixtures generally outperformed pure stands** in terms of **global performance and stability** for the 5 response parameters
- Especially good for stability and the **stability of grain quality**
- Role of **better light interception** in the mixtures for increased benefits
- Still a high variability across environmental conditions
- **Practical rules for variety combinations**: similar heights and phenologies, but different tillering abilities and yield potentials!

Many thanks to my team, colleagues and partners !

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

> Département fédéral de l'économie, de la formation et de la recherche DEFR **Agroscope**

-Laura Stefan/