Contribution of plant to the DOC pool in a soil-plant-digestate system: SAS a ¹³C-labelling experiment **C**Nrs Didelot AF.¹, Jaffrezic A.¹, Jardé E.², Abiven S.^{3,4} L'INSTITUT agro

¹ Institut Agro, INRAE, SAS, 35000, Rennes, France; ² Univ Rennes, CNRS, Géosciences Rennes – UMR 6118, Rennes, France; ³ Laboratoire de Géologie, CNRS – École normale supérieure, PSL University, Institut Pierre Simon Laplace, Rue Lhomond 24, 75005 Paris, France; ⁴ CEREEP-Ecotron Ile De France, ENS, CNRS, PSL University, Chemin de busseau 11, 77140 Saint-Pierre-lès-Nemours, France

Introduction

- Carbon (C) cycle in agrosystems is not completely understood, in particular the interactions between plant rhizodeposition and organic input applied on soil
- Dissolved organic carbon (DOC): mobile and bioavailable fraction, important in the C cycle, heterogeneous composition supplied by various DOC **sources** (plants, organic inputs) **Rhizodeposition**: release of organic C into the soil by roots

Biogas digestate: chemically persistent composition after anaerobic digestion, biostimulant properties on crops [1]

Previous lysimeter field study: higher DOC concentrations measured under

Material and methods

Soil from the field trial (Luvisol-redoxisol, 1.2% C_{orga}, pH 6.3) that received pig slurry (PS), its digestate (DIG) or a mineral fertilizer (MIN)

Université

- Greenhouse conditions
- **24 soil columns** (4 replicates/treatment):
- → 12: containing 2 plants of **white** mustard (Sinapis alba), 12: soil only
- Columns with plants: airtight transparent chambers twice per week for 3h, injection
- a mustard winter crop for a pig slurry digestate treatment (compared to the original pig slurry and mineral fertilizer)
- What is the contribution of the plant to the dissolved C pool?

Results

30

Average δ^{13} C signals: 1778‰ in leaves/stems/roots, 593‰ in flowers/fruits, 10.7‰ in the rhizosphere, -18.2‰ in the bulk labelled soil, 173‰ in the labelled water, -28.2‰ in the unlabelled soil and -26.5‰ in the unlabelled water

No significant differences between treatments regarding the **aboveground** and **belowground biomasses**. Very low **root:shoot ratio** (mean: 0.08 ± 0.01).

- Flower and fruit biomass

of ¹³CO₂ (multi-pulse labelling by photosynthesis)

After 2.5 months of labelling:

- Induction of drainage
- Filtering, **DOC** and **DIC** (inorganic) concentrations measurement
- $\delta^{13}C$ measurement using cavity ringdown spectroscopy in: leaves, stems, flowers, fruits, roots and drained water samples
- Rhizodeposition and rhizosphere priming effect assessment

Discussion

• ¹³C enrichment in all parts of labelled plants, soil and drained water

• More C lost by rhizodeposition than C contained in roots, as observed by Hirte et al. (2018) [2] Negative priming effect (preferential use of fresh substrates by microorganisms) • Additional **DIC** in columns with plants comes from plantderived organic C that was **mineralized**, or **root respiration** • No higher DOC concentrations observed for DIG compared to the other treatments (as observed in the field trial): → In the greenhouse, **optimized conditions** (temperature, light) Enhanced mineralization of organic matter, nutrients more available

Between columns with or without plants, similar DOC concentrations (whatever the treatment) and higher **DIC** concentrations with plants. Plants contributed to 13.3 ± 6.2% of the total dissolved C (DOC + DIC).

Columns	Treatment	DOC	DIC	Total dissolved C from plants	% from plants in the total dissolved C
		mg.L ⁻¹	mg.L ⁻¹	mg.L ⁻¹	%
With	MIN	10.3 ± 1.8ª +	3.1 ± 0.6^{a}	1.6 ± 0.9^{a}	14.0 ± 8.0 ^a
mustard (Labelled)	PS	13.4 ± 2.8^{a}	2.1 ± 1.1^{a}	2.1 ± 0.9^{a}	16.3 ± 8.3 ^a
	DIG	11.1 ± 1.7 ^a	2.8 ± 0.4^{a}	1.2 ± 0.1 ^a	9.6 ± 2.4 ^a
Without	MIN	12.1 ± 1.0^{a}	0.4 ± 0.1^{a}		
mustard (Unlabelled)	PS	13.4 ± 0.7^{a}	0.4 ± 0.1^{a}		
	DIG	13.2 ± 2.0^{a}	0.4 ± 0.1^{a}		

- → Different plant morphology (aboveground biomass of 2 t DM.ha⁻¹ in the field, 15 t DM.ha⁻¹ in the greenhouse)
- → Plants **allocated** a majority of the fixed C to the aboveground parts
- Rhizodeposition, in particular exudation, can take part in nutrients recovery [3]: no need in this experiment
- ► No higher biomass for **DIG** treated plants, despite its **biostimulant properties** [1]: when the soil from the field trial

+ Standard deviation

C from rhizodeposition measured in the rhizosphere (97 ± 26 g C.m⁻²) and in drained water (44 ± 20 mg C.m⁻²), higher compared to the C contained in roots $(48 \pm 5 \text{ g C}.\text{m}^{-2})$, resulting in a high **rhizodeposition:root ratio** (2.0 \pm 0.5). Negative priming effect in rhizosphere (-1.2 ± 17% on average) and drained water $(-161 \pm 59\% \text{ on average})$.

Treatment	C from rhizodeposition in rhizosphere soil	C from rhizodeposition in drained water	Rhizodeposition: root ratio	Priming effect in the rhizosphere	Priming effect in the drained water
	g C.m⁻²	mg C.m ⁻²		%	%
MIN	104 ± 38ª	44 ± 25 ^a	2.4 ± 0.8^{a}	7 ± 24 ^a	-147 ± 64ª
PS	98 ± 16ª	58 ± 27 ^a	1.9 ± 0.3^{a}	-5 ± 11ª	-176 ± 59ª
DIG	89 ± 23 ^a	31 ± 2 ^a	1.8 ± 0.3 ^a	-6 ± 14ª	-160 ± 55ª

was collected, presence of a cover crop sown a month earlier, absorption of the biostimulant molecules [4] that were no longer available for the labelling experiment?

Conclusion

- **No significant differences** between MIN, PS and DIG regarding biomasses, rhizodeposition and rhizosphere priming effect
- Higher DOC concentrations not observed for DIG under greenhouse conditions

[1] Wu and Dong, 2020. Nutrients and Plant Hormones in Anaerobic Digestates, in: Biorefinery of Inorganics. [2] Hirte et al., 2018. Below ground carbon inputs to soil via root biomass and rhizodeposition of field-grown maize and wheat at harvest are independent of net primary productivity. Agriculture, Ecosystems & Environment. [3] Inderjit and Weston, 2003. Root Exudates: an Overview, in: Root Ecology, Ecological Studies. [4] Wong et al., 2015. The importance of phytohormones and microbes in biostimulants: mass spectrometric evidence and their positive effects on plant growth. II World Congress on the Use of Biostimulants in Agriculture.

