Coupling a process-based soil-crop model and life cycle assessment to reduce GHG emissions of crop rotations

<u>Marohn, Carsten</u>; Viswanathan, Michelle; Attia, Ahmed; Fussek, Patryk; de Kock, Arno; Horney, Peter, Dähmlow, Daniel; Quade, Maria; Bakhtiary, Navid; Strassemeyer, Jörn; Feike, Til

Federal Research Centre for Cultivated Plants

The project **KlimaFFolgen** is funded by the Federal Ministry of Food and Agriculture as part of the German Climate Protection Programme 2022

by decision of the German Bundestag

Rationale

- Agriculture is a significant source of greenhouse gases (GHG), e.g. 7.7% of total CO₂ and 74.5% of N₂O in Germany in 2023 (UBA).
- Improved rotations can improve the GHG balance of cropping systems a) sequestering CO₂ in soil organic matter (SOM); b) replacing mineral fertiliser (the main contributor to N₂O emissions in conventional agriculture) with N₂ fixed by legumes; c) capturing excess N after main crops, reducing the risk of leaching and indirect N₂O emissions.
- Farmers are hesitant to implement new crop rotations without evidence of beneficial effects on yields and climate.
- Process-based models can simulate nutrient cycles, plant growth and GHG emissions considering site-specific conditions.
- Life cycle assessment (LCA) with dynamic data from simulations can deliver more accurate GHG flux estimations than static emission factors.
- Scenario analysis using the coupled modelling-LCA approach helps identifying environmentally and economically promising crop rotations.

Objectives of the KlimaFFolgen project

Develop a coupled model-LCA interface combining

- a user friendly web application for practitioners to explore crop rotations on selected plots;
- a scientific tool for regional assessment of trends including projections under different climate scenarios (RCPs).

Materials and Methods

- Decision support tool: SYNOPS-KlimaFFolgen based on https://synops.julius-kuehn.de
- Soil data (horizon-specific, 1:200,000): BÜK 200 data base (BGR)
- Daily weather observations & projections (T_{air}, rain, solar radiation; 1970-2099; 1km² grid): German Weather Service (DWD)
- Models: DSSAT 4.8.2 for plant growth and soils, including DayCENT for SOM dynamics
- LCA: Cradle to farm gate, entire crop rotation.

Results: Prototype of the *KlimaFFolgen* decision support tool

Input data (coverage: Germany)

Simulated outputs

h Szenarien	2012 - wintergerste	2013 - Kaps 2014 - Winterweizen	2015 - Wintergerste	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
h Arbeitsgängen				120kg Nmin 120kg Nmin + Erbse 180kg Nmin
Crop	yields [kg ha ⁻¹] DSSAT HWAH		N₂O [kg N ha⁻¹] DSSAT N2OGED

Illustrative LCA outputs [kg CO₂eq ha⁻¹]

Discussion

LCA nac

- Counterintuitive effect of legume cover crop on N₂O emissions (more SOC built up, but also higher respiration)
- Plant parameters of typical rotations calibrated & validated for SW Germany (Attia et al. 2024); plant and soil parameters (ongoing) for SOC and N₂O emissions across Germany (Mallast et al. 2021)

References

- Attia et al. 2024. doi.org/10.1016/j.agee.2024.109167
- Mallast et al. 2022. doi.org/10.3220/DATA20220119144442
- UBA:Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen. https://www.umweltbundesamt.de/daten/land-forstwirtschaft/beitrag-der-landwirtschaft-zu-den-treibhausgas

Outlook

- Default rotations per site; automatised planting & harvest dates;
- Feedback workshops with potential users (farmers, consultants, researchers);
- Deployment of the tool to the public (until Nov 26)

Julius Kuehn Institute, Institute for Strategies and Technology Assessment, Stahnsdorfer Damm 81, 14532 Kleinmachnow, Germany Page carsten.marohn@julius-kuehn.de

www.julius-kuehn.de